

 Navigation

 	
 index

 	
 next |

 	keybase documentation

Welcome to keybase’s documentation!

What is Keybase? From their website [https://keybase.io/]:

Note

Keybase will be a public directory of publicly auditable public keys.
All paired, for convenience, with unique usernames.

It provides an easy way to publish public keys, have them validated against known good sources for users like Twitter, email addresses and even web sites, and make all of this stuff discoverable. It’s trying to take away the mystery of handing keys around so that cryptography can be more widely used by the masses.

The keybase python API allows you to search, download and use the stored keys in the Keybase directory. You can do things like encrypt messages and files for a user or verify a signature on a file from a user. Eventually it will be extended to allow you to administer Keybase user identities and their associated public/private keypairs via the KeybaseAdmin class.

If you’re not familiar with public/private key encryption check out this tutorial [http://computer.howstuffworks.com/encryption3.htm] or Laurent Luce’s excellent article Python and cryptography with pycrypto [http://www.laurentluce.com/posts/python-and-cryptography-with-pycrypto/].

	Installation

	Examples
	Get a User’s Credentials

	Verifying a Signature on String Data

	Verifying an Embedded Signature on a File

	Verify an Detached Signature on a File

	The Keybase API
	Keybase Common Methods

	The Keybase Class – Accessing Public User Data

	The KeybasePublicKey Class – Public Key Records from the Keybase.io Data Store

	The KeybaseAdmin Class – Manipulating User’s Public Key Data

	The Keybase Error Classes

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2014, Ian Chesal.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	keybase documentation

Installation

Note

The keybase API hasn’t be pushed to PyPI yet. Soon though. For now you need to download, build and install the package from the github-based source.

Simply run:

pip install keybase

 Copyright 2014, Ian Chesal.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	keybase documentation

Examples

Get a User’s Credentials

You can retrieve a specific user’s credentials from the Keybase data store like so::

kbase = Keybase('irc')
primary_key = kbase.get_public_key()
primary_key.kid
u'0101f56ecf27564e5bec1c50250d09efe963cad3138d4dc7f4646c77f6008c1e23cf0a'

You can use the ascii or bundle properties on the primary_key object in the above example to get an ASCII version of their primary public key, suitable for feeding in to a signature verification or encryption routine. You can also use the primary_key object itself to do verification and encryption.

Verifying a Signature on String Data

Where the strings are clear-signed text strings that are produced using a gpg command like so::

gpg --clearsign helloworld.txt --local-user keybase.io/irc

These clear-signed text snippets are common in signed email. Where the body of the email is surrounded by the signature like so::

-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA1

Hello, world!
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1

iQEcBAEBAgAGBQJTWHSVAAoJEO7zMmcMHMCAYpEH/j2hJApaHXSj0ddgbrmUdJ2z
vZ5DFDR9syTPHrwtRJLPH7tgdiAtUpyXLozL321JIR7sExzONl7IKdpH1Qn0y1I/
h6mV0Dm+AAJXWtbn08rDW2WWuW4+EBEy12Cfk2r1rF8KT+g3gcc2wLejSACkf7v+
jKo5SnvIwIMze+Msqjcz/+hbKRdEEoD2zihe6ilMfbR1tCt8GALQVa8YEoHpgkcL
MWbXSCgM7Q0gf00kHWa3A8rClW0dzW5kJG+InbymtenaDNwoNlFb6DHUdyF//REx
YjJ6qHf7qFwtXPBiwrZf+VYt5OnjeWW6ybYasfrJiXi1qnd6IM40QCGlR0UXhII=
=oUn0
-----END PGP SIGNATURE-----

These types of clear-signed strings can be verified like so::

message_good = """
-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA1

Hello, world!
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1

iQEcBAEBAgAGBQJTWHSVAAoJEO7zMmcMHMCAYpEH/j2hJApaHXSj0ddgbrmUdJ2z
vZ5DFDR9syTPHrwtRJLPH7tgdiAtUpyXLozL321JIR7sExzONl7IKdpH1Qn0y1I/
h6mV0Dm+AAJXWtbn08rDW2WWuW4+EBEy12Cfk2r1rF8KT+g3gcc2wLejSACkf7v+
jKo5SnvIwIMze+Msqjcz/+hbKRdEEoD2zihe6ilMfbR1tCt8GALQVa8YEoHpgkcL
MWbXSCgM7Q0gf00kHWa3A8rClW0dzW5kJG+InbymtenaDNwoNlFb6DHUdyF//REx
YjJ6qHf7qFwtXPBiwrZf+VYt5OnjeWW6ybYasfrJiXi1qnd6IM40QCGlR0UXhII=
=oUn0
-----END PGP SIGNATURE-----
"""
message_bad = """
-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA1

Hello, another world!
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1

iQEcBAEBAgAGBQJTWHSVAAoJEO7zMmcMHMCAYpEH/j2hJApaHXSj0ddgbrmUdJ2z
vZ5DFDR9syTPHrwtRJLPH7tgdiAtUpyXLozL321JIR7sExzONl7IKdpH1Qn0y1I/
h6mV0Dm+AAJXWtbn08rDW2WWuW4+EBEy12Cfk2r1rF8KT+g3gcc2wLejSACkf7v+
jKo5SnvIwIMze+Msqjcz/+hbKRdEEoD2zihe6ilMfbR1tCt8GALQVa8YEoHpgkcL
MWbXSCgM7Q0gf00kHWa3A8rClW0dzW5kJG+InbymtenaDNwoNlFb6DHUdyF//REx
YjJ6qHf7qFwtXPBiwrZf+VYt5OnjeWW6ybYasfrJiXi1qnd6IM40QCGlR0UXhII=
=oUn0
-----END PGP SIGNATURE-----
"""
kbase = Keybase('irc')
verified = kbase.verify(message_good)
assert verified
verified = kbase.verify(message_bad)
assert not verified
kbase.verify(message_bad, throw_error=True)
Traceback (most recent call last):
...
KeybasePublicKeyVerifyError: signature bad

In the message_bad case you can see that either the message was tampered with or the signature was faked. In either case you shouldn’t trust it because it couldn’t be verified correctly.

Verifying an Embedded Signature on a File

Where the file was signed with a gpg command like so::

gpg -u keybase.io/irc --sign helloworld.txt

So there is one, binary, file helloworld.txt.gpg that contains both the data and the signature on the data to verify.:

kbase = Keybase('irc')
verified = kbase.verify_file('helloworld.txt.gpg')
assert verified

Verify an Detached Signature on a File

Where the file was signed with a gpg command like so::

gpg -u keybase.io/irc --detach-sign helloworld.txt

So there are two files:

	The original data file; and

	The detached .sig file that contains the signature for the data.

In this case::

kbase = Keybase('irc')
fname = 'helloworld.txt'
signame = 'helloworld.txt.sig'
verified = kbase.verify_file(fname, signame)
assert verified

 Copyright 2014, Ian Chesal.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	keybase documentation

The Keybase API

Keybase Common Methods

The following common, convenience methods exist to make it easier to work with
GnuPG and the Keybase API in your code.

	
keybase.gpg(binary='gpg')[source]

	Returns the full path to the gpg instance on this machine.

I implemented this because the gnupg.GPG class was having a
hard time dealing with the fact that my Homebrew-installed GPG instance
was a symlink in the /usr/local/bin directory instead of a real
path to a real file.

If your GnuPG binary isn’t named gpg you can override the default
with the binary=<something> option to the call to give it another
name for the executable.

On windows you shouldn’t need to supply an extension to the command
like .exe or .cmd – it will figure it out for you.

Returns None if it cannot find a gpg instance in your PATH.

The Keybase Class – Accessing Public User Data

The Keybase class allows you to find users in the Keybase directory and access their stored public keys. Public keys let you encrypt messages and files for a user; only the person holding the private key from the pair can decrypt a file encrypted with the public key. Public keys also let you verify the signature on data; only the user with the private key can create a signature that can be validated with the specific public key.

	
class keybase.Keybase(username=None)[source]

	A read-only view of a keybase.io user and their publically available
keys. This class allows you to do interesting things with someone’s
public key data like encrypt a message for them or verify that a message
they signed to you was actually signed by them.

If you supply a username the user’s public information will be
automatically retrieved. If the username doesn’t exist a
keybase.KeybaseUserNotFound exception will be raised.

If you don’t supply a username you can initiate a user lookup by
using the keybase.Keybase.lookup() method on the object after
you create
it.

Note

It does not allow you to manipulate the key data in the keybase.io data
store in any way. If you want to administer a user’s keys please see
keybase.KeybaseAdmin.

	
KEYBASE_API_VERSION = '1.0'

	

	
KEYBASE_BASE_URL = 'https://keybase.io/_/api/'

	

	
api_version[source]

	The Keybase API version in use for this instance.

	
get_public_key(keyname='primary')[source]

	Returns a key named keyname as a keybase.KeybasePublicKey object
if it exists in the current Keybase instance. Defaults to a key named
primary if you opt not to supply a keyname when you call the
method.

>>> kbase = Keybase('irc')
>>> primary_key = kbase.get_public_key()
>>> primary_key.kid
u'0101f56ecf27564e5bec1c50250d09efe963cad3138d4dc7f4646c77f6008c1e23cf0a'

Otherwise it returns None if a key by the name of keyname doesn’t
exist for this user.

>>> kbase.get_public_key('thiskeydoesnotexist')

If the instance hasn’t been bound to a username yet it throws a
keybase.KeybaseUnboundInstanceError.

>>> kbase = Keybase()
>>> kbase.get_public_key()
Traceback (most recent call last):
...
KeybaseUnboundInstanceError: Unable to fetch public key

	
is_bound[source]

	Returns True if this Keybase object instance is bound to a user or
False if it has yet to be associated with a specific username.

	
location[source]

	The geographical location of the person associated with this
Keybase data.

	
lookup(username)[source]

	Looks up a user in the keybase.io public directory and initializes
this Keybase class instance with the user’s public keybase.io
details.

>>> kbase = Keybase()
>>> kbase.username
>>> kbase.lookup('irc')
>>> kbase.username
'irc'

The lookup() method can be called until the first successful user
is found in keybase.io. After that, subsequent lookup calls will
raise a keybase.KeybaseLookupInvalidError exception:

>>> kbase.lookup('ab')
Traceback (most recent call last):
...
KeybaseLookupInvalidError: Keybase object already bound to username 'irc'

To get the private view of the user you need to authenticate as
the user using the login() method after successfully looking the
user up in keybase.io.

If the user cannot be found a keybase.KeybaseUserNotFound
exception is raised:

>>> kbase2 = Keybase()
>>> kbase2.lookup('abcdefghijklmno123')
Traceback (most recent call last):
...
KeybaseUserNotFound: ('User abcdefghijklmno123 not found', {'url': u'https://keybase.io/_/api/1.0/user/lookup.json?username=abcdefghijklmno123'})

	
name[source]

	The full name of the person associated with this Keybase data.

	
public_keys[source]

	A tuple of all the public keys available for this account. An empty
tuple is returned if the instance isn’t bound to a user or the user
has no keys.

>>> kbase = Keybase('irc')
>>> kbase.public_keys
(u'primary',)

	
username[source]

	The username of the person associated with this Keybase data.

	
verify(data, throw_error=False)[source]

	Equivalent to::

kbase = Keybase('irc')
pkey = kbase.get_public_key()
verified = pkey.verify(some_message)
assert verified

It’s a convenience method on the Keybase object to do data
verification with the primary key.

For more information see keybase.KeybasePublicKey.verify.

If the instance hasn’t been bound to a username yet it throws a
keybase.KeybaseUnboundInstanceError.

	
verify_file(fname, sigfname=None, throw_error=False)[source]

	Equivalent to::

kbase = Keybase('irc')
pkey = kbase.get_public_key()
verified = pkey.verify_file(fname, signame)
assert verified

It’s a convenience method on the Keybase object to do data
verification with the primary key.

For more information see keybase.KeybasePublicKey.verify_file.

If the instance hasn’t been bound to a username yet it throws a
keybase.KeybaseUnboundInstanceError.

The KeybasePublicKey Class – Public Key Records from the Keybase.io Data Store

	
class keybase.KeybasePublicKey(**kwargs)[source]

	A class that represents the public key side of a public/private key pair.

It is tied very closely to the keybase.io data that’s stored for public
keys in user profiles in the data store. As such, it’s meant to be
initialized with a hash that contains the fields seen in a keybase.io
public key record.

Under the hood it uses GnupGP’s gnupg.GPG class to do the
heavy lifting. It creates a keystore that is unique to this instance of
the class and loads the public key in to this keystore.

You won’t be able to decrypt with this class because it only contains a public
key, not a private key. But you can encrypt and and sign:

>>> kbase = Keybase('irc')
>>> pkey = kbase.get_public_key()
>>> pkey.key_fingerprint
u'7cc0ce678c37fc27da3ce494f56b7a6f0a32a0b9'

If a valid GPG instance cannot be created when you initialize a KeybasePublicKey
a KeybasePublicKeyError will be raised.

	
ascii[source]

	Synonym for bundle property.

	
bundle[source]

	The GPG key bundle. This is the ASCII representation of the public
key data associated with the Keybase key.

	
ctime[source]

	The datetime this key was created in the keybase database.

	
key_fingerprint[source]

	The GPG fingerprint for the key.

	
key_type[source]

	The Keybase key type for this key (integer).

	
kid[source]

	The Keybase key ID for this key.

	
mtime[source]

	The datetime this key was last modified in the Keybase database.

	
ukbid[source]

	The UKB ID for the key.

	
verify(data, throw_error=False)[source]

	Verify the signature on the contents of the string data.
Returns True if the signature was verified with the key, False
if it was not. If you supply throw_error=True to the call then
it will throw a KeybasePublicKeyVerifyError on verification failure
with a status message that tells you more about why verification
failed.

Failure status messages are:

	invalid gpg key

	signature bad

	signature error

	decryption failed

	no public key

	key exp

	key rev

For more information what these messages mean please see the
gnupg._parsers.Verify manual page.

>>> message_good = """
... -----BEGIN PGP SIGNED MESSAGE-----
... Hash: SHA1
...
... Hello, world!
... -----BEGIN PGP SIGNATURE-----
... Version: GnuPG v1
...
... iQEcBAEBAgAGBQJTWHSVAAoJEO7zMmcMHMCAYpEH/j2hJApaHXSj0ddgbrmUdJ2z
... vZ5DFDR9syTPHrwtRJLPH7tgdiAtUpyXLozL321JIR7sExzONl7IKdpH1Qn0y1I/
... h6mV0Dm+AAJXWtbn08rDW2WWuW4+EBEy12Cfk2r1rF8KT+g3gcc2wLejSACkf7v+
... jKo5SnvIwIMze+Msqjcz/+hbKRdEEoD2zihe6ilMfbR1tCt8GALQVa8YEoHpgkcL
... MWbXSCgM7Q0gf00kHWa3A8rClW0dzW5kJG+InbymtenaDNwoNlFb6DHUdyF//REx
... YjJ6qHf7qFwtXPBiwrZf+VYt5OnjeWW6ybYasfrJiXi1qnd6IM40QCGlR0UXhII=
... =oUn0
... -----END PGP SIGNATURE-----
... """
>>> message_bad = """
... -----BEGIN PGP SIGNED MESSAGE-----
... Hash: SHA1
...
... Hello, another world!
... -----BEGIN PGP SIGNATURE-----
... Version: GnuPG v1
...
... iQEcBAEBAgAGBQJTWHSVAAoJEO7zMmcMHMCAYpEH/j2hJApaHXSj0ddgbrmUdJ2z
... vZ5DFDR9syTPHrwtRJLPH7tgdiAtUpyXLozL321JIR7sExzONl7IKdpH1Qn0y1I/
... h6mV0Dm+AAJXWtbn08rDW2WWuW4+EBEy12Cfk2r1rF8KT+g3gcc2wLejSACkf7v+
... jKo5SnvIwIMze+Msqjcz/+hbKRdEEoD2zihe6ilMfbR1tCt8GALQVa8YEoHpgkcL
... MWbXSCgM7Q0gf00kHWa3A8rClW0dzW5kJG+InbymtenaDNwoNlFb6DHUdyF//REx
... YjJ6qHf7qFwtXPBiwrZf+VYt5OnjeWW6ybYasfrJiXi1qnd6IM40QCGlR0UXhII=
... =oUn0
... -----END PGP SIGNATURE-----
... """
>>> kbase = Keybase('irc')
>>> pkey = kbase.get_public_key()
>>> verified = pkey.verify(message_good)
>>> assert verified
>>> verified = pkey.verify(message_bad)
>>> assert not verified
>>> pkey.verify(message_bad, throw_error=True)
Traceback (most recent call last):
...
KeybasePublicKeyVerifyError: signature bad

If you want to verify the signature on a file (either embedded
or detached) please see keybase.KeybasePublicKey.verify_file()
method.

	
verify_file(fname, sigfname=None, throw_error=False)[source]

	Verify the signature on a file named fname. This is a string file
name, not a file object. If only a fname is provided the method
assumes the signature is embedded in the file itself. An embedded
signature is usually produced like so:

gpg -u keybase.io/irc --sign helloworld.txt

If a sigfname argument is prodived it’s assumed to be a path to
signature file for a detached signature. A detached signature is
usually produced like so::

gpg -u keybase.io/irc --detach-sign helloworld.txt

Returns True if the signature is verifiable with the key, False if it
is not verifiable.

If you supply the throw_error=True option to the call then it will
throw a KeybasePublicKeyVerifyError on verification failure with a
status message that tells you more about why the verification failed.

Failure status messages are:

	invalid gpg key

	signature bad

	signature error

	decryption failed

	no public key

	key exp

	key rev

For more information what these messages mean please see the
gnupg._parsers.Verify manual page.

The KeybaseAdmin Class – Manipulating User’s Public Key Data

The KeybaseAdmin class lets you authenticate as a user to the Keybase.io public data store and manipulate the stored public keys for the user. You can add and revoke keys, create new keys and validate other user’s keys.

Note

This class is currently not implemented! Anything you read here is planned, not real, at this point.

	
class keybase.KeybaseAdmin(username)[source]

	Bases: keybase.Keybase

Extends the keybase.Keybase class to add adminstrative functions
to what the Keybase class can already do. Allowing you to add keys,
revoke keys, sign keys and kill all active login sessions for a user.

In order to use this class you need to be in possession of the login
password for the keybase.io account.

Note

This class is still not implemented. The documentation you see here
is for future reference only.

	
login(password)[source]

	Executes a two-round login procedure for a user using the supplied
password to authenticate. The first round involves looking up the
user and getting their salt and a challenge in the form of a login
session ID. The second round involves computing the password hash
and using it to answer the password challenge.

If the login succeeds the method returns True and a session ID is
stored in the instance along with all the user object details returned
by the API when a login is successful.

If login fails the method throws a keybase.KeybaseError with all
the details for why login failed in the message.

	
salt[source]

	The salt for this login session.

	
session[source]

	The session cookie that’s tracking this login session.

The Keybase Error Classes

	
class keybase.KeybaseError[source]

	General error class for Keybase errors.

	
class keybase.KeybaseUnboundInstanceError[source]

	Thrown when calling a Keybase object method that requires the object
be bound to a real user in the keybase store and the instance hasn’t
had such a binding established yet.

	
class keybase.KeybaseUserNotFound[source]

	Thrown when calling Keybase.lookup(username) and the username cannot
be located in the keybase.io public key repository.

	
class keybase.KeybaseLookupInvalidError[source]

	Thrown when calling Keybase.lookup(username) on an instance that has
already been bound to a valid user via another lookup() call.

	
class keybase.KeybasePublicKeyError[source]

	Thrown when a KeybasePublicKey cannot be created successfully.

	
class keybase.KeybasePublicKeyVerifyError[source]

	Thrown when a KeybasePublicKey cannot verify the signature on a
data object.

 Copyright 2014, Ian Chesal.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	keybase documentation

Index

 A
 | B
 | C
 | G
 | I
 | K
 | L
 | M
 | N
 | P
 | S
 | U
 | V

A

 	

 	api_version (keybase.Keybase attribute)

 	

 	ascii (keybase.KeybasePublicKey attribute)

B

 	

 	bundle (keybase.KeybasePublicKey attribute)

C

 	

 	ctime (keybase.KeybasePublicKey attribute)

G

 	

 	get_public_key() (keybase.Keybase method)

 	

 	gpg() (in module keybase)

I

 	

 	is_bound (keybase.Keybase attribute)

K

 	

 	key_fingerprint (keybase.KeybasePublicKey attribute)

 	key_type (keybase.KeybasePublicKey attribute)

 	Keybase (class in keybase)

 	KEYBASE_API_VERSION (keybase.Keybase attribute)

 	KEYBASE_BASE_URL (keybase.Keybase attribute)

 	KeybaseAdmin (class in keybase)

 	KeybaseError (class in keybase)

 	

 	KeybaseLookupInvalidError (class in keybase)

 	KeybasePublicKey (class in keybase)

 	KeybasePublicKeyError (class in keybase)

 	KeybasePublicKeyVerifyError (class in keybase)

 	KeybaseUnboundInstanceError (class in keybase)

 	KeybaseUserNotFound (class in keybase)

 	kid (keybase.KeybasePublicKey attribute)

L

 	

 	location (keybase.Keybase attribute)

 	login() (keybase.KeybaseAdmin method)

 	

 	lookup() (keybase.Keybase method)

M

 	

 	mtime (keybase.KeybasePublicKey attribute)

N

 	

 	name (keybase.Keybase attribute)

P

 	

 	public_keys (keybase.Keybase attribute)

S

 	

 	salt (keybase.KeybaseAdmin attribute)

 	

 	session (keybase.KeybaseAdmin attribute)

U

 	

 	ukbid (keybase.KeybasePublicKey attribute)

 	

 	username (keybase.Keybase attribute)

V

 	

 	verify() (keybase.Keybase method)

 	

 	(keybase.KeybasePublicKey method)

 	

 	verify_file() (keybase.Keybase method)

 	

 	(keybase.KeybasePublicKey method)

 Copyright 2014, Ian Chesal.
 Created using Sphinx 1.2.2.

 _static/comment-close.png

_static/comment.png

_static/down.png

_static/minus.png

_static/ajax-loader.gif

_static/file.png

_static/up-pressed.png

_static/down-pressed.png

_static/comment-bright.png

_static/plus.png

_modules/index.html

 Navigation

 		
 index

 		keybase documentation »

 All modules for which code is available

		keybase

 © Copyright 2014, Ian Chesal.
 Created using Sphinx 1.2.2.

_modules/keybase.html

 Navigation

 		
 index

 		keybase documentation »

 		Module code »

 Source code for keybase

'''
.. module:: keybase
 :platform: Unix, Windows
 :synopsis: Python class interface to the keybase.io API.

.. moduleauthor:: Ian Chesal <ian.chesal@gmail.com>

'''

#pylint: disable=R0902
#pylint: disable=C0301

import datetime
import requests
import os
import gnupg
import tempfile
import shutil

[docs]def gpg(binary='gpg'):
 '''
 Returns the full path to the gpg instance on this machine.

 I implemented this because the :mod:`gnupg.GPG` class was having a
 hard time dealing with the fact that my Homebrew-installed GPG instance
 was a symlink in the ``/usr/local/bin`` directory instead of a real
 path to a real file.

 If your GnuPG binary isn't named ``gpg`` you can override the default
 with the ``binary=<something>`` option to the call to give it another
 name for the executable.

 On windows you shouldn't need to supply an extension to the command
 like ``.exe`` or ``.cmd`` -- it will figure it out for you.

 Returns ``None`` if it cannot find a gpg instance in your PATH.
 '''
 mygpg = _which(binary)
 if len(mygpg) > 0:
 return os.path.realpath(mygpg[0])
 return None

def _which(executable, flags=os.X_OK):
 '''
 Borrowed from Twisted's :mod:twisted.python.proutils .

 Search PATH for executable files with the given name.

 On newer versions of MS-Windows, the PATHEXT environment variable will be
 set to the list of file extensions for files considered executable. This
 will normally include things like ".EXE". This fuction will also find files
 with the given name ending with any of these extensions.

 On MS-Windows the only flag that has any meaning is os.F_OK. Any other
 flags will be ignored.

 Returns a list of the full paths to files found, in the order in which
 they were found.
 '''
 result = []
 exts = [item for item in os.environ.get('PATHEXT', '').split(os.pathsep) if item]
 path = os.environ.get('PATH', None)
 if path is None:
 return []
 for tpath in os.environ.get('PATH', '').split(os.pathsep):
 tpath = os.path.join(tpath, executable)
 if os.access(tpath, flags):
 result.append(tpath)
 for ext in exts:
 pext = tpath + ext
 if os.access(pext, flags):
 result.append(tpath)
 return result

[docs]class Keybase(object):
 '''
 A read-only view of a keybase.io user and their publically available
 keys. This class allows you to do interesting things with someone's
 public key data like encrypt a message for them or verify that a message
 they signed to you was actually signed by them.

 If you supply a username the user's public information will be
 automatically retrieved. If the username doesn't exist a
 :mod:`keybase.KeybaseUserNotFound` exception will be raised.

 If you don't supply a username you can initiate a user lookup by
 using the :func:`keybase.Keybase.lookup` method on the object after
 you create
 it.

 .. note::

 It does not allow you to manipulate the key data in the keybase.io data
 store in any way. If you want to administer a user's keys please see
 :mod:`keybase.KeybaseAdmin`.

 '''

 KEYBASE_BASE_URL = 'https://keybase.io/_/api/'
 KEYBASE_API_VERSION = '1.0'

 def __init__(self, username=None):
 self._username = None
 self._user_object = None
 self.__lookup_performed = False
 if username:
 self.lookup(username)

 @property
[docs] def name(self):
 '''
 The full name of the person associated with this Keybase data.
 '''
 return self._section_getter('profile', 'full_name')

 @property
[docs] def location(self):
 '''
 The geographical location of the person associated with this
 Keybase data.
 '''
 return self._section_getter('profile', 'location')

 @property
[docs] def username(self):
 '''
 The username of the person associated with this Keybase data.
 '''
 return self._username

 @property
[docs] def api_version(self):
 '''
 The Keybase API version in use for this instance.
 '''
 return self.KEYBASE_API_VERSION

 @property
[docs] def is_bound(self):
 '''
 Returns True if this Keybase object instance is bound to a user or
 False if it has yet to be associated with a specific username.
 '''
 if self._username and self._user_object and self.__lookup_performed:
 return True
 return False

 @property
[docs] def public_keys(self):
 '''
 A tuple of all the public keys available for this account. An empty
 tuple is returned if the instance isn't bound to a user or the user
 has no keys.

 >>> kbase = Keybase('irc')
 >>> kbase.public_keys
 (u'primary',)
 '''
 pkeys = list()
 if self._user_object:
 if 'public_keys' in self._user_object:
 pkeys = self._user_object['public_keys'].keys()
 return tuple(pkeys)

 def _section_getter(self, section, key):
 '''
 Gets a value from a specific section of the user data object.

 Returns the value if the user data object has been loaded, the
 section exists in the user data object and the key exists in
 that section in the user data object:

 >>> kbase = Keybase('irc')
 >>> kbase._section_getter('profile', 'full_name')
 u'Ian Chesal'

 Otherwise it returns None if the section doesn't exist:

 >>> if not kbase._section_getter('invalidsectionname', 'full_name'):
 ... print 'Section not found!'
 Section not found!

 Or the key doesn't exist in the section:

 >>> if not kbase._section_getter('profile', 'invalidkeyname'):
 ... print 'Key not found!'
 Key not found!

 '''
 if self._user_object:
 if section in self._user_object:
 if key in self._user_object[section]:
 return self._user_object[section][key]
 return None

 def _raise_unbound_error(self, message):
 '''
 Raises a :mod:`keybase.`KeybaseUnboundInstanceError` if the instance
 isn't currently bound to a real user in the keybase.io data store.
 Appends message to the error when it's raised.
 '''
 if not self.is_bound:
 raise KeybaseUnboundInstanceError(message)

[docs] def get_public_key(self, keyname='primary'):
 '''
 Returns a key named keyname as a :mod:`keybase.KeybasePublicKey` object
 if it exists in the current Keybase instance. Defaults to a key named
 ``primary`` if you opt not to supply a keyname when you call the
 method.

 >>> kbase = Keybase('irc')
 >>> primary_key = kbase.get_public_key()
 >>> primary_key.kid
 u'0101f56ecf27564e5bec1c50250d09efe963cad3138d4dc7f4646c77f6008c1e23cf0a'

 Otherwise it returns None if a key by the name of keyname doesn't
 exist for this user.

 >>> kbase.get_public_key('thiskeydoesnotexist')

 If the instance hasn't been bound to a username yet it throws a
 :mod:`keybase.KeybaseUnboundInstanceError`.

 >>> kbase = Keybase()
 >>> kbase.get_public_key()
 Traceback (most recent call last):
 ...
 KeybaseUnboundInstanceError: Unable to fetch public key
 '''
 self._raise_unbound_error('Unable to fetch public key')
 key = None
 if keyname in self.public_keys:
 key_data = self._user_object['public_keys'][keyname]
 key = KeybasePublicKey(**key_data)
 return key

[docs] def lookup(self, username):
 '''
 Looks up a user in the keybase.io public directory and initializes
 this Keybase class instance with the user's public keybase.io
 details.

 >>> kbase = Keybase()
 >>> kbase.username
 >>> kbase.lookup('irc')
 >>> kbase.username
 'irc'

 The lookup() method can be called until the first successful user
 is found in keybase.io. After that, subsequent lookup calls will
 raise a :mod:`keybase.KeybaseLookupInvalidError` exception:

 >>> kbase.lookup('ab')
 Traceback (most recent call last):
 ...
 KeybaseLookupInvalidError: Keybase object already bound to username 'irc'

 To get the private view of the user you need to authenticate as
 the user using the login() method after successfully looking the
 user up in keybase.io.

 If the user cannot be found a :mod:`keybase.KeybaseUserNotFound`
 exception is raised:

 >>> kbase2 = Keybase()
 >>> kbase2.lookup('abcdefghijklmno123')
 Traceback (most recent call last):
 ...
 KeybaseUserNotFound: ('User abcdefghijklmno123 not found', {'url': u'https://keybase.io/_/api/1.0/user/lookup.json?username=abcdefghijklmno123'})
 '''
 # If this object is already initialized then the user shouldn't
 # be calling this method a second time.
 if self.__lookup_performed:
 raise KeybaseLookupInvalidError(
 'Keybase object already bound to username \'{}\''.format(self._username))
 url = self._build_url('user/lookup.json')
 payload = {'username': username}
 resp = requests.get(url, params=payload, timeout=10)
 resp.raise_for_status()
 jresponse = resp.json()
 # Pendantic searching of the status section of the API's JSON
 # response. We could just leave it up to the 'them' section
 # existing or not but future API changes may require that we
 # handle the response differently based on the statue section
 # in the response and the response codes therein so lets prepare
 # for that now.
 if not 'status' in jresponse or not 'name' in jresponse['status']:
 raise KeybaseError('Malformed API response to user/lookup.json request', {
 'url': resp.url,
 'response': resp.text
 })
 if jresponse['status']['name'] == 'NOT_FOUND':
 raise KeybaseUserNotFound('User {} not found'.format(username), {
 'url': resp.url,
 })
 if jresponse['status']['name'] == 'INPUT_ERROR':
 raise KeybaseUserNotFound('User {} not found'.format(username), {
 'url': resp.url,
 })
 if not 'them' in jresponse:
 raise KeybaseError('Malformed API response to user/lookup.json request', {
 'url': resp.url,
 'response': resp.text
 })
 # Initialize this user from the 'them' part of the reponse.
 self._user_object = jresponse['them']
 self._username = username
 self.__lookup_performed = True

[docs] def verify(self, data, throw_error=False):
 '''
 Equivalent to:::

 kbase = Keybase('irc')
 pkey = kbase.get_public_key()
 verified = pkey.verify(some_message)
 assert verified

 It's a convenience method on the Keybase object to do data
 verification with the primary key.

 For more information see :mod:`keybase.KeybasePublicKey.verify`.

 If the instance hasn't been bound to a username yet it throws a
 :mod:`keybase.KeybaseUnboundInstanceError`.
 '''
 self._raise_unbound_error('Unable to fetch public key')
 pkey = self.get_public_key()
 return pkey.verify(
 data,
 throw_error=throw_error)

[docs] def verify_file(self, fname, sigfname=None, throw_error=False):
 '''
 Equivalent to:::

 kbase = Keybase('irc')
 pkey = kbase.get_public_key()
 verified = pkey.verify_file(fname, signame)
 assert verified

 It's a convenience method on the Keybase object to do data
 verification with the primary key.

 For more information see :mod:`keybase.KeybasePublicKey.verify_file`.

 If the instance hasn't been bound to a username yet it throws a
 :mod:`keybase.KeybaseUnboundInstanceError`.
 '''
 self._raise_unbound_error('Unable to fetch public key')
 pkey = self.get_public_key()
 return pkey.verify_file(
 fname=fname,
 sigfname=sigfname,
 throw_error=throw_error)

 @staticmethod
 def _build_url(endpoint):
 '''
 Builds a Keybase API URL for endpoint. Returns the URL as
 a simple string.

 >>> Keybase._build_url('foo')
 'https://keybase.io/_/api/1.0/foo.json'
 >>> Keybase._build_url('/foo/bar.json')
 'https://keybase.io/_/api/1.0/foo/bar.json'
 '''
 if len(endpoint) < 1:
 raise KeybaseError('Missing URL endpoint for API call')
 if endpoint[0] != '/':
 endpoint = '/' + endpoint
 if not endpoint.endswith('.json'):
 # All API calls end with .json (at least for our purposes)
 endpoint = endpoint + '.json'
 url = Keybase.KEYBASE_BASE_URL + Keybase.KEYBASE_API_VERSION + endpoint
 return url

[docs]class KeybaseAdmin(Keybase):
 '''
 Extends the :mod:`keybase.Keybase` class to add adminstrative functions
 to what the Keybase class can already do. Allowing you to add keys,
 revoke keys, sign keys and kill all active login sessions for a user.

 In order to use this class you need to be in possession of the login
 password for the keybase.io account.

 .. note::

 This class is still not implemented. The documentation you see here
 is for future reference only.
 '''

 def __init__(self, username):
 Keybase.__init__(self, username)
 self.__salt = None
 self.__session_cookie = None

 @property
[docs] def salt(self):
 '''
 The salt for this login session.
 '''
 return self.__salt

 @property
[docs] def session(self):
 '''
 The session cookie that's tracking this login session.
 '''
 return self.__session_cookie

 def _get_salt(self):
 '''
 The first round of the two round Keybase login procedure. This
 function gets the salt stored for the user as well as a short-lived
 random challenge string in the form of a login session ID.

 The salt is stored in the object instance's _salt property while
 the login session ID is returned by the function.

 If the object has no username property an KeybaseError is thrown.

 >>> kbase = KeybaseAdmin(username='irc')
 >>> print kbase.salt
 None
 >>> login_session = kbase._get_salt()
 >>> print kbase.salt
 5838c199c1b825a069185d5707302693
 '''
 self._raise_unbound_error('Unable to retrieve salt from keybase.io')
 url = self._build_url('getsalt.json')
 payload = {'email_or_username': self._username}
 resp = requests.get(url, params=payload, timeout=10)
 resp.raise_for_status()
 jresponse = resp.json()
 if not 'salt' in jresponse:
 raise KeybaseError('_get_salt(): No salt value returned for login {0}'.format(self._username))
 if not 'login_session' in jresponse:
 raise KeybaseError('_get_salt(): No login_session value returned for login {0}'.format(self._username))
 self.__salt = jresponse['salt']
 return jresponse['login_session']

[docs] def login(self, password):
 '''
 Executes a two-round login procedure for a user using the supplied
 password to authenticate. The first round involves looking up the
 user and getting their salt and a challenge in the form of a login
 session ID. The second round involves computing the password hash
 and using it to answer the password challenge.

 If the login succeeds the method returns True and a session ID is
 stored in the instance along with all the user object details returned
 by the API when a login is successful.

 If login fails the method throws a :mod:`keybase.KeybaseError` with all
 the details for why login failed in the message.
 '''
 self._raise_unbound_error('Unable to log in to keybase.io')
 login_session = self._get_salt()

[docs]class KeybasePublicKey(object):
 '''
 A class that represents the public key side of a public/private key pair.

 It is tied very closely to the keybase.io data that's stored for public
 keys in user profiles in the data store. As such, it's meant to be
 initialized with a hash that contains the fields seen in a keybase.io
 public key record.

 Under the hood it uses GnupGP's :py:class:`gnupg.GPG` class to do the
 heavy lifting. It creates a keystore that is unique to this instance of
 the class and loads the public key in to this keystore.

 You won't be able to decrypt with this class because it only contains a public
 key, not a private key. But you can encrypt and and sign:

 >>> kbase = Keybase('irc')
 >>> pkey = kbase.get_public_key()
 >>> pkey.key_fingerprint
 u'7cc0ce678c37fc27da3ce494f56b7a6f0a32a0b9'

 If a valid GPG instance cannot be created when you initialize a KeybasePublicKey
 a KeybasePublicKeyError will be raised.
 '''
 def __init__(self, **kwargs):
 self.__data = dict()
 for key, value in kwargs.iteritems():
 if key == 'mtime' or key == 'ctime':
 self.__data[key] = datetime.datetime.fromtimestamp(int(value))
 else:
 self.__data[key] = value
 self.__gpg = None
 self.__tempdir = tempfile.mkdtemp(suffix='.keybase')
 if self.bundle:
 self.__gpg = gnupg.GPG(
 binary=gpg(),
 homedir=self.__tempdir,
 verbose=False,
 use_agent=False)
 import_result = self.__gpg.import_keys(self.bundle)
 # TODO: For some reason importing a single key results in two result
 # entries in the ImportResult.result and ImportResult.fingerprints
 # arrays. I've asked the gnupg devs why this is and I'm waiting to
 # hear back. For now we expect one and only one key to exist in our
 # keyring after import so we'll check all of them an assert they're
 # all carrying the same fingerprint as the key that was loaded in to
 # this instance.
 for fprint in import_result.fingerprints:
 if fprint.lower() != self.key_fingerprint:
 raise KeybasePublicKeyError('A serious security error has occured: fingerprint mismatch on key import')
 else:
 raise KeybasePublicKeyError('Missing PGP key bundle in init data')
 if not self.__gpg:
 raise KeybasePublicKeyError('Unable to create Keybase public key instance')

 def __del__(self):
 # This makes sure the keyring we created is destroyed when the object
 # gets garbage collected.
 shutil.rmtree(self.__tempdir, ignore_errors=True)

 @property
[docs] def kid(self):
 '''
 The Keybase key ID for this key.
 '''
 return self.__property_getter('kid')

 @property
[docs] def key_type(self):
 '''
 The Keybase key type for this key (integer).
 '''
 return self.__property_getter('key_type')

 @property
[docs] def bundle(self):
 '''
 The GPG key bundle. This is the ASCII representation of the public
 key data associated with the Keybase key.
 '''
 return self.__property_getter('bundle')

 @property
[docs] def ascii(self):
 '''
 Synonym for bundle property.
 '''
 return self.__property_getter('bundle')

 @property
[docs] def mtime(self):
 '''
 The datetime this key was last modified in the Keybase database.
 '''
 return self.__property_getter('mtime')

 @property
[docs] def ctime(self):
 '''
 The datetime this key was created in the keybase database.
 '''
 return self.__property_getter('ctime')

 @property
[docs] def ukbid(self):
 '''
 The UKB ID for the key.
 '''
 return self.__property_getter('ukbid')

 @property
[docs] def key_fingerprint(self):
 '''
 The GPG fingerprint for the key.
 '''
 return self.__property_getter('key_fingerprint').lower()

 def __property_getter(self, prop):
 '''
 Get a random property value from the __data dictionary in the
 object. Returns the value or None if the property isn't in the
 dictionary.
 '''
 value = None
 if prop in self.__data:
 value = self.__data[prop]
 return value

[docs] def verify(self, data, throw_error=False):
 '''
 Verify the signature on the contents of the string ``data``.
 Returns True if the signature was verified with the key, False
 if it was not. If you supply ``throw_error=True`` to the call then
 it will throw a KeybasePublicKeyVerifyError on verification failure
 with a status message that tells you more about why verification
 failed.

 Failure status messages are:

 * invalid gpg key
 * signature bad
 * signature error
 * decryption failed
 * no public key
 * key exp
 * key rev

 For more information what these messages mean please see the
 :py:class:`gnupg._parsers.Verify` manual page.

 >>> message_good = """
 ... -----BEGIN PGP SIGNED MESSAGE-----
 ... Hash: SHA1
 ...
 ... Hello, world!
 ... -----BEGIN PGP SIGNATURE-----
 ... Version: GnuPG v1
 ...
 ... iQEcBAEBAgAGBQJTWHSVAAoJEO7zMmcMHMCAYpEH/j2hJApaHXSj0ddgbrmUdJ2z
 ... vZ5DFDR9syTPHrwtRJLPH7tgdiAtUpyXLozL321JIR7sExzONl7IKdpH1Qn0y1I/
 ... h6mV0Dm+AAJXWtbn08rDW2WWuW4+EBEy12Cfk2r1rF8KT+g3gcc2wLejSACkf7v+
 ... jKo5SnvIwIMze+Msqjcz/+hbKRdEEoD2zihe6ilMfbR1tCt8GALQVa8YEoHpgkcL
 ... MWbXSCgM7Q0gf00kHWa3A8rClW0dzW5kJG+InbymtenaDNwoNlFb6DHUdyF//REx
 ... YjJ6qHf7qFwtXPBiwrZf+VYt5OnjeWW6ybYasfrJiXi1qnd6IM40QCGlR0UXhII=
 ... =oUn0
 ... -----END PGP SIGNATURE-----
 ... """
 >>> message_bad = """
 ... -----BEGIN PGP SIGNED MESSAGE-----
 ... Hash: SHA1
 ...
 ... Hello, another world!
 ... -----BEGIN PGP SIGNATURE-----
 ... Version: GnuPG v1
 ...
 ... iQEcBAEBAgAGBQJTWHSVAAoJEO7zMmcMHMCAYpEH/j2hJApaHXSj0ddgbrmUdJ2z
 ... vZ5DFDR9syTPHrwtRJLPH7tgdiAtUpyXLozL321JIR7sExzONl7IKdpH1Qn0y1I/
 ... h6mV0Dm+AAJXWtbn08rDW2WWuW4+EBEy12Cfk2r1rF8KT+g3gcc2wLejSACkf7v+
 ... jKo5SnvIwIMze+Msqjcz/+hbKRdEEoD2zihe6ilMfbR1tCt8GALQVa8YEoHpgkcL
 ... MWbXSCgM7Q0gf00kHWa3A8rClW0dzW5kJG+InbymtenaDNwoNlFb6DHUdyF//REx
 ... YjJ6qHf7qFwtXPBiwrZf+VYt5OnjeWW6ybYasfrJiXi1qnd6IM40QCGlR0UXhII=
 ... =oUn0
 ... -----END PGP SIGNATURE-----
 ... """
 >>> kbase = Keybase('irc')
 >>> pkey = kbase.get_public_key()
 >>> verified = pkey.verify(message_good)
 >>> assert verified
 >>> verified = pkey.verify(message_bad)
 >>> assert not verified
 >>> pkey.verify(message_bad, throw_error=True)
 Traceback (most recent call last):
 ...
 KeybasePublicKeyVerifyError: signature bad

 If you want to verify the signature on a file (either embedded
 or detached) please see :func:`keybase.KeybasePublicKey.verify_file`
 method.
 '''
 vobj = self.__gpg.verify(data)
 if vobj.valid:
 return True
 if throw_error:
 raise KeybasePublicKeyVerifyError('{}'.format(vobj.status))
 return False

[docs] def verify_file(self, fname, sigfname=None, throw_error=False):
 '''
 Verify the signature on a file named ``fname``. This is a string file
 name, not a file object. If only a ``fname`` is provided the method
 assumes the signature is embedded in the file itself. An embedded
 signature is usually produced like so::

 gpg -u keybase.io/irc --sign helloworld.txt

 If a ``sigfname`` argument is prodived it's assumed to be a path to
 signature file for a detached signature. A detached signature is
 usually produced like so:::

 gpg -u keybase.io/irc --detach-sign helloworld.txt

 Returns True if the signature is verifiable with the key, False if it
 is not verifiable.

 If you supply the ``throw_error=True`` option to the call then it will
 throw a KeybasePublicKeyVerifyError on verification failure with a
 status message that tells you more about why the verification failed.

 Failure status messages are:

 * invalid gpg key
 * signature bad
 * signature error
 * decryption failed
 * no public key
 * key exp
 * key rev

 For more information what these messages mean please see the
 :py:class:`gnupg._parsers.Verify` manual page.
 '''
 vobj = None
 if not sigfname:
 # The embedded signature version of the GPG call expects
 # a file object, not a file name, for some reason so...
 with open(fname, 'rb') as fobj:
 vobj = self.__gpg.verify_file(fobj)
 else:
 # The detached signature version of the GPG call expects
 # file names so...
 vobj = self.__gpg.verify_file(fname, sigfname)
 if vobj.valid:
 return True
 if throw_error:
 raise KeybasePublicKeyVerifyError('{}'.format(vobj.status))
 return False

[docs]class KeybaseError(Exception):
 '''
 General error class for Keybase errors.
 '''
 pass

[docs]class KeybaseUnboundInstanceError(Exception):
 '''
 Thrown when calling a Keybase object method that requires the object
 be bound to a real user in the keybase store and the instance hasn't
 had such a binding established yet.
 '''
 pass

[docs]class KeybaseUserNotFound(Exception):
 '''
 Thrown when calling Keybase.lookup(username) and the username cannot
 be located in the keybase.io public key repository.
 '''
 pass

[docs]class KeybaseLookupInvalidError(Exception):
 '''
 Thrown when calling Keybase.lookup(username) on an instance that has
 already been bound to a valid user via another lookup() call.
 '''
 pass

[docs]class KeybasePublicKeyError(Exception):
 '''
 Thrown when a KeybasePublicKey cannot be created successfully.
 '''
 pass

[docs]class KeybasePublicKeyVerifyError(Exception):
 '''
 Thrown when a KeybasePublicKey cannot verify the signature on a
 data object.
 '''
 pass

 © Copyright 2014, Ian Chesal.
 Created using Sphinx 1.2.2.

_static/up.png

