

 Navigation

 	
 index

 	
 next |

 	keybase documentation

Welcome to keybase’s documentation!

What is Keybase? From their website [https://keybase.io/]:

Note

Keybase will be a public directory of publicly auditable public keys.
All paired, for convenience, with unique usernames.

It provides an easy way to publish public keys, have them validated against known good sources for users like Twitter, email addresses and even web sites, and make all of this stuff discoverable. It’s trying to take away the mystery of handing keys around so that cryptography can be more widely used by the masses.

The keybase python API allows you to search, download and use the stored keys in the Keybase directory. You can do things like encrypt messages and files for a user or verify a signature on a file from a user. Eventually it will be extended to allow you to administer Keybase user identities and their associated public/private keypairs via the KeybaseAdmin class.

If you’re not familiar with public/private key encryption check out this tutorial [http://computer.howstuffworks.com/encryption3.htm] or Laurent Luce’s excellent article Python and cryptography with pycrypto [http://www.laurentluce.com/posts/python-and-cryptography-with-pycrypto/].

	Installation

	Examples
	Get a User’s Credentials

	Verifying a Signature on String Data

	Verifying an Embedded Signature on a File

	Verify an Detached Signature on a File

	Encrypting a Message for a Keybase User

	Encrypting a File for a Keybase User

	The Keybase API
	Keybase Common Methods

	The Keybase Class – Accessing Public User Data

	The KeybasePublicKey Class – Public Key Records from the Keybase.io Data Store

	The Keybase Error Classes

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2014, Ian Chesal.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	keybase documentation

Installation

Simply run:

[sudo] pip install keybase-api

 Copyright 2014, Ian Chesal.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	keybase documentation

Examples

Get a User’s Credentials

You can retrieve a specific user’s credentials from the Keybase data store like so:

kbase = Keybase('irc')
primary_key = kbase.get_public_key()
primary_key.kid
u'0101f56ecf27564e5bec1c50250d09efe963cad3138d4dc7f4646c77f6008c1e23cf0a'

You can use the ascii or bundle properties on the primary_key object in the above example to get an ASCII version of their primary public key, suitable for feeding in to a signature verification or encryption routine. You can also use the primary_key object itself to do verification and encryption.

Verifying a Signature on String Data

Where the strings are clear-signed text strings that are produced using a gpg command like so:

gpg --clearsign helloworld.txt --local-user keybase.io/irc

These clear-signed text snippets are common in signed email. Where the body of the email is surrounded by the signature like so:

-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA1

Hello, world!
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1

iQEcBAEBAgAGBQJTWHSVAAoJEO7zMmcMHMCAYpEH/j2hJApaHXSj0ddgbrmUdJ2z
vZ5DFDR9syTPHrwtRJLPH7tgdiAtUpyXLozL321JIR7sExzONl7IKdpH1Qn0y1I/
h6mV0Dm+AAJXWtbn08rDW2WWuW4+EBEy12Cfk2r1rF8KT+g3gcc2wLejSACkf7v+
jKo5SnvIwIMze+Msqjcz/+hbKRdEEoD2zihe6ilMfbR1tCt8GALQVa8YEoHpgkcL
MWbXSCgM7Q0gf00kHWa3A8rClW0dzW5kJG+InbymtenaDNwoNlFb6DHUdyF//REx
YjJ6qHf7qFwtXPBiwrZf+VYt5OnjeWW6ybYasfrJiXi1qnd6IM40QCGlR0UXhII=
=oUn0
-----END PGP SIGNATURE-----

These types of clear-signed strings can be verified like so:

message_good = """
-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA1

Hello, world!
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1

iQEcBAEBAgAGBQJTWHSVAAoJEO7zMmcMHMCAYpEH/j2hJApaHXSj0ddgbrmUdJ2z
vZ5DFDR9syTPHrwtRJLPH7tgdiAtUpyXLozL321JIR7sExzONl7IKdpH1Qn0y1I/
h6mV0Dm+AAJXWtbn08rDW2WWuW4+EBEy12Cfk2r1rF8KT+g3gcc2wLejSACkf7v+
jKo5SnvIwIMze+Msqjcz/+hbKRdEEoD2zihe6ilMfbR1tCt8GALQVa8YEoHpgkcL
MWbXSCgM7Q0gf00kHWa3A8rClW0dzW5kJG+InbymtenaDNwoNlFb6DHUdyF//REx
YjJ6qHf7qFwtXPBiwrZf+VYt5OnjeWW6ybYasfrJiXi1qnd6IM40QCGlR0UXhII=
=oUn0
-----END PGP SIGNATURE-----
"""
message_bad = """
-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA1

Hello, another world!
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1

iQEcBAEBAgAGBQJTWHSVAAoJEO7zMmcMHMCAYpEH/j2hJApaHXSj0ddgbrmUdJ2z
vZ5DFDR9syTPHrwtRJLPH7tgdiAtUpyXLozL321JIR7sExzONl7IKdpH1Qn0y1I/
h6mV0Dm+AAJXWtbn08rDW2WWuW4+EBEy12Cfk2r1rF8KT+g3gcc2wLejSACkf7v+
jKo5SnvIwIMze+Msqjcz/+hbKRdEEoD2zihe6ilMfbR1tCt8GALQVa8YEoHpgkcL
MWbXSCgM7Q0gf00kHWa3A8rClW0dzW5kJG+InbymtenaDNwoNlFb6DHUdyF//REx
YjJ6qHf7qFwtXPBiwrZf+VYt5OnjeWW6ybYasfrJiXi1qnd6IM40QCGlR0UXhII=
=oUn0
-----END PGP SIGNATURE-----
"""
kbase = Keybase('irc')
verified = kbase.verify(message_good)
assert verified
verified = kbase.verify(message_bad)
assert not verified
kbase.verify(message_bad, throw_error=True)
Traceback (most recent call last):
...
KeybasePublicKeyVerifyError: signature bad

In the message_bad case you can see that either the message was tampered with or the signature was faked. In either case you shouldn’t trust it because it couldn’t be verified correctly.

Verifying an Embedded Signature on a File

Where the file was signed with a gpg command like so:

gpg -u keybase.io/irc --sign helloworld.txt

So there is one, binary, file helloworld.txt.gpg that contains both the data and the signature on the data to verify:

kbase = Keybase('irc')
verified = kbase.verify_file('helloworld.txt.gpg')
assert verified

Verify an Detached Signature on a File

Where the file was signed with a gpg command like so:

gpg -u keybase.io/irc --detach-sign helloworld.txt

So there are two files:

	The original data file; and

	The detached .sig file that contains the signature for the data.

In this case:

kbase = Keybase('irc')
fname = 'helloworld.txt'
signame = 'helloworld.txt.sig'
verified = kbase.verify_file(fname, signame)
assert verified

Encrypting a Message for a Keybase User

Given some str formatted data, you can create an ASCII armored, encrypted str representation of that data suitable for sending to the user. Only someone with the private key, presumably this Keybase user, will be able to decrypt this data:

kbase = Keybase('irc')
instring = 'Hello, world!'
encrypted = kbase.encrypt(instring)
assert encrypted
assert not encrypted.isspace()
assert encrypted != instring

This ASCII armored approach to encrypting is useful for embedding secret messages in to standard, plaintext communications like emails, tweets or text messages.

Encrypting a File for a Keybase User

You can create a binary, encrypted file for a user using their Keybase key. Only the user, with their private key, will be able to decrypt the data. The input file contents does not have to be ASCII in this case:

kbase = Keybase('irc')
with open('inputfile.bin', 'rb') as infile:
 with open('inputfile.bin.gpg', 'wb') as outfile:
 data = infile.read()
 encrypted_data = kbase.encrypt(data, armor=False)
 outfile.write(encrypted_data.data)
assert os.path.isfile('inputfile.bin.gpg')

The user can now decrypt inputfile.bin.gpg with:

gpg --decrypt inputfile.bin.gpg

They will be prompted for the private key’s password.

 Copyright 2014, Ian Chesal.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	keybase documentation

The Keybase API

Keybase Common Methods

	
keybase.discover(idtype, ids)[source]

	Lookup Keybase accounts using other information like Twitter handles
or Github user names. You can pass an iterable of IDs to lookup and you
will get back a tuple of Keybase instances for every user found that
matches the list. There maybe be more Keybase instances in the list
than in the input array if partial matches occured.

>>> users = discover(TWITTER, ['ircri'])
>>> type(users[0])
<class 'keybase.keybase.Keybase'>
>>> users[0].username
u'irc'
>>> users[0].get_public_key().kid
u'0101f56ecf27564e5bec1c50250d09efe963cad3138d4dc7f4646c77f6008c1e23cf0a'

Valid types are:

TWITTER - match on twitter usernames
GITHUB - match on github usernames
HACKERNEWS - match on hackernews usernames
WEB - match on a website domain name
COINBASE - match on a coinbase domain
KEYFINGERPRINT - match on a PGP key fingerprint

No matches to any of the provided IDs does not result in an error, but
an empty tuple being returned:

>>> users = discover(TWITTER, ['jack'])
>>> len(users)
0

If you pass an unrecognized ID type it will raise a
KeybaseInvalidIdTypeError:

>>> discover('invalidtype', ['ircri'])
Traceback (most recent call last):
...
KeybaseInvalidIdTypeError

	
keybase.gpg(binary=None)[source]

	Returns the full path to the gpg instance on this machine. It prefers
gpg2 but will search for gpg if it cannot find gpg2.

>>> len(gpg()) > 0
True
>>> len(gpg('gpg')) > 0
True

I implemented this because the gnupg.GPG class was having a
hard time dealing with the fact that my Homebrew-installed GPG instance
was a symlink in the /usr/local/bin directory instead of a real
path to a real file.

If you want to use a binary with a specific name, supply the
binary=bName option when you call gpg() and it will use your
custom binary name instead.

On windows you shouldn’t need to supply an extension to the command
like .exe or .cmd – it will figure it out for you.

Returns None if it cannot find a gpg2 or gpg instance in your PATH:

>>> gpg('notagpgbinary')

The Keybase Class – Accessing Public User Data

The Keybase class allows you to find users in the Keybase directory and access their stored public keys. Public keys let you encrypt messages and files for a user; only the person holding the private key from the pair can decrypt a file encrypted with the public key. Public keys also let you verify the signature on data; only the user with the private key can create a signature that can be validated with the specific public key.

	
class keybase.Keybase(username)[source]

	A read-only view of a keybase.io user and their publically available
keys. This class allows you to do interesting things with someone’s
public key data like encrypt a message for them or verify that a message
they signed to you was actually signed by them.

The public information is automatically retrieved when you build a new
instance of the class.

>>> kbase = Keybase('irc')
>>> kbase.username
'irc'

If the user cannot be found a keybase.KeybaseUserNotFound
exception is raised:

>>> kbase = Keybase('abcdefghijklmno123notauserhahaha')
Traceback (most recent call last):
...
KeybaseUserNotFound: User abcdefghijklmno123notauserhahaha not found

Note

It does not allow you to manipulate the key data in the keybase.io data
store in any way.

	
encrypt(data, **kwargs)[source]

	Equivalent to:

kbase = Keybase('irc')
pkey = kbase.get_public_key()
verified = pkey.encrypt(data, **kwargs)
assert verified

It’s a convenience method on the Keybase object to do data
verification with the primary key.

For more information see keybase.KeybasePublicKey.encrypt.

	
get_public_key(keyname='primary')[source]

	Returns a key named keyname as a keybase.KeybasePublicKey object
if it exists in the current Keybase instance. Defaults to a key named
primary if you opt not to supply a keyname when you call the
method.

>>> kbase = Keybase('irc')
>>> primary_key = kbase.get_public_key()
>>> primary_key.kid
u'0101f56ecf27564e5bec1c50250d09efe963cad3138d4dc7f4646c77f6008c1e23cf0a'

Otherwise it returns None if a key by the name of keyname doesn’t
exist for this user.

>>> kbase.get_public_key('thiskeydoesnotexist')

	
location[source]

	The geographical location of the person associated with this
Keybase data.

>>> k = Keybase('irc')
>>> k.location
u'Bay Area, California'

	
name[source]

	The full name of the person associated with this Keybase data.

>>> k = Keybase('irc')
>>> k.name
u'Ian Chesal'

	
public_keys[source]

	A tuple of all the public keys available for this account. An empty
tuple is returned if the instance isn’t bound to a user or the user
has no keys.

>>> kbase = Keybase('irc')
>>> kbase.public_keys
(u'families', u'primary', u'sibkeys', u'subkeys')

	
username[source]

	The username of the person associated with this Keybase data.

>>> k = Keybase('irc')
>>> k.username
'irc'

	
verify(data, throw_error=False)[source]

	Equivalent to:

kbase = Keybase('irc')
pkey = kbase.get_public_key()
verified = pkey.verify(some_message)
assert verified

It’s a convenience method on the Keybase object to do data
verification with the primary key.

For more information see keybase.KeybasePublicKey.verify.

	
verify_file(fname, sigfname=None, throw_error=False)[source]

	Equivalent to:

kbase = Keybase('irc')
pkey = kbase.get_public_key()
verified = pkey.verify_file(fname, signame)
assert verified

It’s a convenience method on the Keybase object to do data
verification with the primary key.

For more information see keybase.KeybasePublicKey.verify_file.

The KeybasePublicKey Class – Public Key Records from the Keybase.io Data Store

	
class keybase.KeybasePublicKey(**kwargs)[source]

	A class that represents the public key side of a public/private key pair.

It is tied very closely to the keybase.io data that’s stored for public
keys in user profiles in the data store. As such, it’s meant to be
initialized with a hash that contains the fields seen in a keybase.io
public key record.

Under the hood it uses GnupGP’s gnupg.GPG class to do the
heavy lifting. It creates a keystore that is unique to this instance of
the class and loads the public key in to this keystore.

You won’t be able to decrypt with this class because it only contains a public
key, not a private key. But you can encrypt and and sign:

>>> kbase = Keybase('irc')
>>> pkey = kbase.get_public_key()
>>> pkey.key_fingerprint
u'7cc0ce678c37fc27da3ce494f56b7a6f0a32a0b9'

If a valid GPG instance cannot be created when you initialize a KeybasePublicKey
a KeybasePublicKeyError will be raised.

	
ascii[source]

	Synonym for bundle property.

	
bundle[source]

	The GPG key bundle. This is the ASCII representation of the public
key data associated with the Keybase key.

	
cipher_algos[source]

	Returns a tuple of available cypher algorithms that you can use with
this key to encrypt data. The available algorithms depend entirely
on the GPG version installed on the machine though most, if not
all GPG versions, support AES256.

>>> kbase = Keybase('irc')
>>> pkey = kbase.get_public_key()
>>> 'AES256' in pkey.cipher_algos
True

	
compress_algos[source]

	Returns a tuple of available compression algorithms that you can use
with this key to compress encrypted data. The available algorithms
depend entirely on the GPG version installed on the machine though
most, if not all GPG versions, support ZIP.

>>> kbase = Keybase('irc')
>>> pkey = kbase.get_public_key()
>>> 'ZIP' in pkey.compress_algos
True

	
ctime[source]

	The datetime this key was created in the keybase database.

	
digest_algos[source]

	Returns a tuple of available digest algorithms that you can use with
this key to hash data. The available algorithms depend entirely
on the GPG version installed on the machine though most, if not
all GPG versions, support SHA512.

>>> kbase = Keybase('irc')
>>> pkey = kbase.get_public_key()
>>> 'SHA512' in pkey.digest_algos
True

	
encrypt(data, armor=True, cipher_algo=None, digest_algo=None, compress_algo=None)[source]

	Encrypt the message contained in the string data for the owner
of this KeybasePublicKey instance.

If armor=True the output is ASCII armored; otherwise the output
will be a
gnupg._parsers.Crypt object [https://python-gnupg.readthedocs.org/en/latest/gnupg.html#gnupg._parsers.Crypt].

If encryption fails a KeybasePublicKeyEncryptError is raised.

If it succeeds data object is returned. Assuming armor=True the
returned data is just plain old ASCII text as a str().

Note

The remaining options are supplied for maximum flexibility with GPG
but you can, for the most part, just ignore them and go with the
defaults if you want the simpilest (but still secure) path to
encrypting data with this API.

If cipher_algo is supplied it should be the name of a cipher
algorithm to use. The default algorithm is AES256 and you can
get a list of available algorithms from the
keybase.KeybasePublicKey.crypto_algos() parameter.

If digest_algo is supplied it should be the name of a digest
algorithm to use. The default is SHA512 and you can get a list of
available algorithms from the
keybase.KeybasePublicKey.digest_algos() parameter.

If compress_algo is supplied it should be the name of a compression
algorithm to use. The default is ZIP and you can get a list of
available algorithms from the
keybase.KeybasePublicKey.compress_algos() parameter.

For more information on how encryption works please see the
gnupg.encrypt manual page.

A simple example:

kbase = Keybase('irc')
pkey = kbase.get_public_key()
instring = 'Hello, world!'
encrypted = pkey.encrypt(instring)
assert encrypted
assert not encrypted.isspace()
assert encrypted != instring

	
key_fingerprint[source]

	The GPG fingerprint for the key.

	
key_type[source]

	The Keybase key type for this key (integer).

	
kid[source]

	The Keybase key ID for this key.

	
mtime[source]

	The datetime this key was last modified in the Keybase database.

	
ukbid[source]

	The UKB ID for the key.

	
verify(data, throw_error=False)[source]

	Verify the signature on the contents of the string data.
Returns True if the signature was verified with the key, False
if it was not. If you supply throw_error=True to the call then
it will throw a KeybasePublicKeyVerifyError on verification failure
with a status message that tells you more about why verification
failed.

Failure status messages are:

	invalid gpg key

	signature bad

	signature error

	decryption failed

	no public key

	key exp

	key rev

For more information what these messages mean please see the
gnupg._parsers.Verify manual page.

>>> message_good = """
... -----BEGIN PGP SIGNED MESSAGE-----
... Hash: SHA1
...
... Hello, world!
... -----BEGIN PGP SIGNATURE-----
... Version: GnuPG v1
...
... iQEcBAEBAgAGBQJTWHSVAAoJEO7zMmcMHMCAYpEH/j2hJApaHXSj0ddgbrmUdJ2z
... vZ5DFDR9syTPHrwtRJLPH7tgdiAtUpyXLozL321JIR7sExzONl7IKdpH1Qn0y1I/
... h6mV0Dm+AAJXWtbn08rDW2WWuW4+EBEy12Cfk2r1rF8KT+g3gcc2wLejSACkf7v+
... jKo5SnvIwIMze+Msqjcz/+hbKRdEEoD2zihe6ilMfbR1tCt8GALQVa8YEoHpgkcL
... MWbXSCgM7Q0gf00kHWa3A8rClW0dzW5kJG+InbymtenaDNwoNlFb6DHUdyF//REx
... YjJ6qHf7qFwtXPBiwrZf+VYt5OnjeWW6ybYasfrJiXi1qnd6IM40QCGlR0UXhII=
... =oUn0
... -----END PGP SIGNATURE-----
... """
>>> message_bad = """
... -----BEGIN PGP SIGNED MESSAGE-----
... Hash: SHA1
...
... Hello, another world!
... -----BEGIN PGP SIGNATURE-----
... Version: GnuPG v1
...
... iQEcBAEBAgAGBQJTWHSVAAoJEO7zMmcMHMCAYpEH/j2hJApaHXSj0ddgbrmUdJ2z
... vZ5DFDR9syTPHrwtRJLPH7tgdiAtUpyXLozL321JIR7sExzONl7IKdpH1Qn0y1I/
... h6mV0Dm+AAJXWtbn08rDW2WWuW4+EBEy12Cfk2r1rF8KT+g3gcc2wLejSACkf7v+
... jKo5SnvIwIMze+Msqjcz/+hbKRdEEoD2zihe6ilMfbR1tCt8GALQVa8YEoHpgkcL
... MWbXSCgM7Q0gf00kHWa3A8rClW0dzW5kJG+InbymtenaDNwoNlFb6DHUdyF//REx
... YjJ6qHf7qFwtXPBiwrZf+VYt5OnjeWW6ybYasfrJiXi1qnd6IM40QCGlR0UXhII=
... =oUn0
... -----END PGP SIGNATURE-----
... """
>>> kbase = Keybase('irc')
>>> pkey = kbase.get_public_key()
>>> verified = pkey.verify(message_good)
>>> assert verified
>>> verified = pkey.verify(message_bad)
>>> assert not verified
>>> pkey.verify(message_bad, throw_error=True)
Traceback (most recent call last):
...
KeybasePublicKeyVerifyError: signature bad

If you want to verify the signature on a file (either embedded
or detached) please see keybase.KeybasePublicKey.verify_file()
method.

	
verify_file(fname, sigfname=None, throw_error=False)[source]

	Verify the signature on a file named fname. This is a string file
name, not a file object. If only a fname is provided the method
assumes the signature is embedded in the file itself. An embedded
signature is usually produced like so:

gpg -u keybase.io/irc --sign helloworld.txt

If a sigfname argument is prodived it’s assumed to be a path to
signature file for a detached signature. A detached signature is
usually produced like so:

gpg -u keybase.io/irc --detach-sign helloworld.txt

Returns True if the signature is verifiable with the key, False if it
is not verifiable.

If you supply the throw_error=True option to the call then it will
throw a KeybasePublicKeyVerifyError on verification failure with a
status message that tells you more about why the verification failed.

Failure status messages are:

	invalid gpg key

	signature bad

	signature error

	decryption failed

	no public key

	key exp

	key rev

For more information what these messages mean please see the
gnupg._parsers.Verify manual page.

An embedded signature example:

kbase = Keybase('irc')
pkey = kbase.get_public_key()
verified = pkey.verify_file('helloworld.txt.gpg')
assert verified

A detached signature example:

kbase = Keybase('irc')
pkey = kbase.get_public_key()
fname = 'helloworld.txt'
signame = 'helloworld.txt.sig'
verified = pkey.verify_file(fname, signame)
assert verified

The Keybase Error Classes

	
class keybase.KeybaseError[source]

	General error class for Keybase errors.

	
class keybase.KeybaseUnboundInstanceError[source]

	Thrown when calling a Keybase object method that requires the object
be bound to a real user in the keybase store and the instance hasn’t
had such a binding established yet.

	
class keybase.KeybaseUserNotFound[source]

	Thrown when calling Keybase.lookup(username) and the username cannot
be located in the keybase.io public key repository.

	
class keybase.KeybaseLookupInvalidError[source]

	Thrown when calling Keybase.lookup(username) on an instance that has
already been bound to a valid user via another lookup() call.

	
class keybase.KeybasePublicKeyError[source]

	Thrown when a KeybasePublicKey cannot be created successfully.

	
class keybase.KeybasePublicKeyVerifyError[source]

	Thrown when a KeybasePublicKey cannot verify the signature on a
data object.

	
class keybase.KeybasePublicKeyEncryptError[source]

	Thrown when a KeybasePublicKey cannot perform encryption on some
data object.

 Copyright 2014, Ian Chesal.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	keybase documentation

Index

 A
 | B
 | C
 | D
 | E
 | G
 | K
 | L
 | M
 | N
 | P
 | U
 | V

A

 	

 	ascii (keybase.KeybasePublicKey attribute)

B

 	

 	bundle (keybase.KeybasePublicKey attribute)

C

 	

 	cipher_algos (keybase.KeybasePublicKey attribute)

 	compress_algos (keybase.KeybasePublicKey attribute)

 	

 	ctime (keybase.KeybasePublicKey attribute)

D

 	

 	digest_algos (keybase.KeybasePublicKey attribute)

 	

 	discover() (in module keybase)

E

 	

 	encrypt() (keybase.Keybase method)

 	

 	(keybase.KeybasePublicKey method)

G

 	

 	get_public_key() (keybase.Keybase method)

 	

 	gpg() (in module keybase)

K

 	

 	key_fingerprint (keybase.KeybasePublicKey attribute)

 	key_type (keybase.KeybasePublicKey attribute)

 	Keybase (class in keybase)

 	KeybaseError (class in keybase)

 	KeybaseLookupInvalidError (class in keybase)

 	KeybasePublicKey (class in keybase)

 	

 	KeybasePublicKeyEncryptError (class in keybase)

 	KeybasePublicKeyError (class in keybase)

 	KeybasePublicKeyVerifyError (class in keybase)

 	KeybaseUnboundInstanceError (class in keybase)

 	KeybaseUserNotFound (class in keybase)

 	kid (keybase.KeybasePublicKey attribute)

L

 	

 	location (keybase.Keybase attribute)

M

 	

 	mtime (keybase.KeybasePublicKey attribute)

N

 	

 	name (keybase.Keybase attribute)

P

 	

 	public_keys (keybase.Keybase attribute)

U

 	

 	ukbid (keybase.KeybasePublicKey attribute)

 	

 	username (keybase.Keybase attribute)

V

 	

 	verify() (keybase.Keybase method)

 	

 	(keybase.KeybasePublicKey method)

 	

 	verify_file() (keybase.Keybase method)

 	

 	(keybase.KeybasePublicKey method)

 Copyright 2014, Ian Chesal.
 Created using Sphinx 1.2.2.

 _modules/index.html

 Navigation

 		
 index

 		keybase documentation »

 All modules for which code is available

		keybase

 © Copyright 2014, Ian Chesal.
 Created using Sphinx 1.2.2.

_static/ajax-loader.gif

_modules/keybase.html

 Navigation

 		
 index

 		keybase documentation »

 		Module code »

 Source code for keybase

'''
.. module:: keybase
 :platform: Unix, Windows
 :synopsis: Python class interface to the keybase.io API.

.. moduleauthor:: Ian Chesal <ian.chesal@gmail.com>

'''

#pylint: disable=R0902
#pylint: disable=R0913
#pylint: disable=C0301
#pylint: disable=C0302
#pylint: disable=W0142

import datetime
import gnupg
import os
import requests
import shutil
import subprocess
import tempfile

##
CONSTANTS

KEYBASE_BASE_URL = 'https://keybase.io/_/api/'
KEYBASE_API_VERSION = '1.0'
TWITTER = 'twitter'
GITHUB = 'github'
HACKERNEWS = 'hackernews'
WEB = 'web'
COINBASE = 'coinbase'
KEYFINGERPRINT = 'key_fingerprint'

##

[docs]def discover(idtype, ids):
 '''
 Lookup Keybase accounts using other information like Twitter handles
 or Github user names. You can pass an iterable of IDs to lookup and you
 will get back a tuple of Keybase instances for every user found that
 matches the list. There maybe be more Keybase instances in the list
 than in the input array if partial matches occured.

 >>> users = discover(TWITTER, ['ircri'])
 >>> type(users[0])
 <class 'keybase.keybase.Keybase'>
 >>> users[0].username
 u'irc'
 >>> users[0].get_public_key().kid
 u'0101f56ecf27564e5bec1c50250d09efe963cad3138d4dc7f4646c77f6008c1e23cf0a'

 Valid types are:

 TWITTER - match on twitter usernames
 GITHUB - match on github usernames
 HACKERNEWS - match on hackernews usernames
 WEB - match on a website domain name
 COINBASE - match on a coinbase domain
 KEYFINGERPRINT - match on a PGP key fingerprint

 No matches to any of the provided IDs does not result in an error, but
 an empty tuple being returned:

 >>> users = discover(TWITTER, ['jack'])
 >>> len(users)
 0

 If you pass an unrecognized ID type it will raise a
 KeybaseInvalidIdTypeError:

 >>> discover('invalidtype', ['ircri'])
 Traceback (most recent call last):
 ...
 KeybaseInvalidIdTypeError
 '''
 uids = []
 if idtype not in (TWITTER, GITHUB, HACKERNEWS, WEB, COINBASE, KEYFINGERPRINT):
 raise KeybaseInvalidIdTypeError
 jresponse = _get_json_from_url(
 _build_url('user/discover.json'),
 {idtype : (',').join(ids), 'usernames_only' : 1, 'flatten' : 1},
 method='get')
 if not 'status' in jresponse or not 'name' in jresponse['status']:
 raise KeybaseError('Malformed API response to user/discover.json request')
 if not 'matches' in jresponse:
 raise KeybaseError('Malformed API response to user/discover.json request')
 for uid in jresponse['matches']:
 k = Keybase(uid)
 uids.append(k)
 return tuple(uids)

[docs]def gpg(binary=None):
 '''
 Returns the full path to the gpg instance on this machine. It prefers
 ``gpg2`` but will search for ``gpg`` if it cannot find ``gpg2``.

 >>> len(gpg()) > 0
 True
 >>> len(gpg('gpg')) > 0
 True

 I implemented this because the :mod:`gnupg.GPG` class was having a
 hard time dealing with the fact that my Homebrew-installed GPG instance
 was a symlink in the ``/usr/local/bin`` directory instead of a real
 path to a real file.

 If you want to use a binary with a specific name, supply the
 ``binary=bName`` option when you call ``gpg()`` and it will use your
 custom binary name instead.

 On windows you shouldn't need to supply an extension to the command
 like ``.exe`` or ``.cmd`` -- it will figure it out for you.

 Returns ``None`` if it cannot find a gpg2 or gpg instance in your PATH:

 >>> gpg('notagpgbinary')

 '''
 if binary:
 search_list = [binary]
 else:
 search_list = ('gpg2', 'gpg')
 for _gpg in search_list:
 mygpg = _which(_gpg)
 if len(mygpg) > 0:
 return os.path.realpath(mygpg[0])
 return None

def _which(executable, flags=os.X_OK):
 '''
 Borrowed from Twisted's :mod:twisted.python.proutils .

 Search PATH for executable files with the given name.

 >>> _which('ls')
 ['/bin/ls']

 On newer versions of MS-Windows, the PATHEXT environment variable will be
 set to the list of file extensions for files considered executable. This
 will normally include things like ".EXE". This fuction will also find files
 with the given name ending with any of these extensions.

 On MS-Windows the only flag that has any meaning is os.F_OK. Any other
 flags will be ignored.

 Returns a list of the full paths to files found, in the order in which
 they were found.

 If PATH is empty, returns an empty list:

 >>> opath = os.environ['PATH']
 >>> del os.environ['PATH']
 >>> _which('ls')
 []
 >>> os.environ['PATH'] = opath

 '''
 result = []
 exts = [item for item in os.environ.get('PATHEXT', '').split(os.pathsep) if item]
 path = os.environ.get('PATH', None)
 if path is None:
 return []
 for tpath in os.environ.get('PATH', '').split(os.pathsep):
 tpath = os.path.join(tpath, executable)
 if os.access(tpath, flags):
 result.append(tpath)
 for ext in exts:
 pext = tpath + ext
 if os.access(pext, flags):
 result.append(tpath)
 return result

def _build_url(endpoint):
 '''
 Builds a Keybase API URL for endpoint. Returns the URL as
 a simple string.

 >>> _build_url('foo')
 'https://keybase.io/_/api/1.0/foo.json'
 >>> _build_url('/foo/bar.json')
 'https://keybase.io/_/api/1.0/foo/bar.json'

 Raises a KeybaseError if you pass an zero-length endpoint:

 >>> _build_url('')
 Traceback (most recent call last):
 ...
 KeybaseError: Missing URL endpoint for API call

 '''
 if len(endpoint) < 1:
 raise KeybaseError('Missing URL endpoint for API call')
 if endpoint[0] != '/':
 endpoint = '/' + endpoint
 if not endpoint.endswith('.json'):
 # All API calls end with .json (at least for our purposes)
 endpoint = endpoint + '.json'
 url = KEYBASE_BASE_URL + KEYBASE_API_VERSION + endpoint
 return url

def _get_json_from_url(url, params, method='get'):
 '''
 Function to perform HTTP requests (get or post) with given parameters
 and return JSON formatted data.

 >>> salt_url = 'https://keybase.io/_/api/1.0/getsalt.json'
 >>> parameters = {'email_or_username': 'bpugh'}
 >>> example = _get_json_from_url(salt_url, parameters, method='get')
 >>> example['status'] == {u'code': 0, u'name': u'OK'}
 True
 >>> example['salt'] == u'e4725d30ed9df0082df4197596c4110c'
 True
 >>> example['login_session'] is not None
 True

 Raises a ValueError if the method isn't one of 'get' or 'post':

 >>> _get_json_from_url(salt_url, parameters, method='put')
 Traceback (most recent call last):
 ...
 ValueError: Method must be 'get' or 'post'

 Raises a KeybaseError if the response isn't well-formed Keybase JSON
 response. It will raise an HTTPError for non 200-status responses.
 '''
 if method == 'get':
 method = requests.get
 elif method == 'post':
 method = requests.post
 else:
 raise ValueError, "Method must be 'get' or 'post'"
 resp = method(url, params=params)
 resp.raise_for_status()
 jresponse = resp.json()
 if not 'status' in jresponse or not 'name' in jresponse['status']:
 raise KeybaseError('Malformed API response to %s request' % url)
 return jresponse

[docs]class Keybase(object):
 '''
 A read-only view of a keybase.io user and their publically available
 keys. This class allows you to do interesting things with someone's
 public key data like encrypt a message for them or verify that a message
 they signed to you was actually signed by them.

 The public information is automatically retrieved when you build a new
 instance of the class.

 >>> kbase = Keybase('irc')
 >>> kbase.username
 'irc'

 If the user cannot be found a :mod:`keybase.KeybaseUserNotFound`
 exception is raised:

 >>> kbase = Keybase('abcdefghijklmno123notauserhahaha')
 Traceback (most recent call last):
 ...
 KeybaseUserNotFound: User abcdefghijklmno123notauserhahaha not found

 .. note::

 It does not allow you to manipulate the key data in the keybase.io data
 store in any way.

 '''
 def __init__(self, username):
 self._username = None
 self._user_object = None
 self.__lookup_performed = False
 self.__lookup(username)

 @property
[docs] def name(self):
 '''
 The full name of the person associated with this Keybase data.

 >>> k = Keybase('irc')
 >>> k.name
 u'Ian Chesal'
 '''
 return self._section_getter('profile', 'full_name')

 @property
[docs] def location(self):
 '''
 The geographical location of the person associated with this
 Keybase data.

 >>> k = Keybase('irc')
 >>> k.location
 u'Bay Area, California'
 '''
 return self._section_getter('profile', 'location')

 @property
[docs] def username(self):
 '''
 The username of the person associated with this Keybase data.

 >>> k = Keybase('irc')
 >>> k.username
 'irc'
 '''
 return self._username

 @property
[docs] def public_keys(self):
 '''
 A tuple of all the public keys available for this account. An empty
 tuple is returned if the instance isn't bound to a user or the user
 has no keys.

 >>> kbase = Keybase('irc')
 >>> kbase.public_keys
 (u'families', u'primary', u'sibkeys', u'subkeys')
 '''
 pkeys = list()
 if self._user_object:
 if 'public_keys' in self._user_object:
 pkeys = self._user_object['public_keys'].keys()
 return tuple(sorted(pkeys))

 def _section_getter(self, section, key):
 '''
 Gets a value from a specific section of the user data object.

 Returns the value if the user data object has been loaded, the
 section exists in the user data object and the key exists in
 that section in the user data object:

 >>> kbase = Keybase('irc')
 >>> kbase._section_getter('profile', 'full_name')
 u'Ian Chesal'

 Otherwise it returns None if the section doesn't exist:

 >>> if not kbase._section_getter('invalidsectionname', 'full_name'):
 ... print 'Section not found!'
 Section not found!

 Or the key doesn't exist in the section:

 >>> if not kbase._section_getter('profile', 'invalidkeyname'):
 ... print 'Key not found!'
 Key not found!

 '''
 if self._user_object:
 if section in self._user_object:
 if key in self._user_object[section]:
 return self._user_object[section][key]
 return None

[docs] def get_public_key(self, keyname='primary'):
 '''
 Returns a key named keyname as a :mod:`keybase.KeybasePublicKey` object
 if it exists in the current Keybase instance. Defaults to a key named
 ``primary`` if you opt not to supply a keyname when you call the
 method.

 >>> kbase = Keybase('irc')
 >>> primary_key = kbase.get_public_key()
 >>> primary_key.kid
 u'0101f56ecf27564e5bec1c50250d09efe963cad3138d4dc7f4646c77f6008c1e23cf0a'

 Otherwise it returns None if a key by the name of keyname doesn't
 exist for this user.

 >>> kbase.get_public_key('thiskeydoesnotexist')

 '''
 key = None
 if keyname in self.public_keys:
 key_data = self._user_object['public_keys'][keyname]
 key = KeybasePublicKey(**key_data)
 return key

[docs] def verify(self, data, throw_error=False):
 '''
 Equivalent to::

 kbase = Keybase('irc')
 pkey = kbase.get_public_key()
 verified = pkey.verify(some_message)
 assert verified

 It's a convenience method on the Keybase object to do data
 verification with the primary key.

 For more information see :mod:`keybase.KeybasePublicKey.verify`.
 '''
 pkey = self.get_public_key()
 return pkey.verify(
 data,
 throw_error=throw_error)

[docs] def verify_file(self, fname, sigfname=None, throw_error=False):
 '''
 Equivalent to::

 kbase = Keybase('irc')
 pkey = kbase.get_public_key()
 verified = pkey.verify_file(fname, signame)
 assert verified

 It's a convenience method on the Keybase object to do data
 verification with the primary key.

 For more information see :mod:`keybase.KeybasePublicKey.verify_file`.
 '''
 pkey = self.get_public_key()
 return pkey.verify_file(
 fname=fname,
 sigfname=sigfname,
 throw_error=throw_error)

[docs] def encrypt(self, data, **kwargs):
 '''
 Equivalent to::

 kbase = Keybase('irc')
 pkey = kbase.get_public_key()
 verified = pkey.encrypt(data, **kwargs)
 assert verified

 It's a convenience method on the Keybase object to do data
 verification with the primary key.

 For more information see :mod:`keybase.KeybasePublicKey.encrypt`.
 '''
 pkey = self.get_public_key()
 return pkey.encrypt(
 data=data,
 **kwargs)

 def __lookup(self, username):
 '''
 Looks up a user in the keybase.io public directory and initializes
 this Keybase class instance with the user's public keybase.io
 details.

 If the user cannot be found a :mod:`keybase.KeybaseUserNotFound`
 exception is raised:

 If the object is already bound to a Keybase user a
 :mod:`keybase.KeybaseLookupInvalidError` exception is raised.
 '''
 # If this object is already initialized then the user shouldn't
 # be calling this method a second time.
 if self.__lookup_performed:
 raise KeybaseLookupInvalidError(
 'Keybase object already bound to username \'{}\''.format(self._username))
 jresponse = _get_json_from_url(_build_url('user/lookup.json'), {'username': username}, method='get')
 if jresponse['status']['name'] in ('NOT_FOUND', 'INPUT_ERROR'):
 raise KeybaseUserNotFound('User {} not found'.format(username))
 if not 'them' in jresponse:
 raise KeybaseError('Malformed API response to user/lookup.json request')
 # Initialize this user from the 'them' part of the reponse.
 self._user_object = jresponse['them']
 self._username = username
 self.__lookup_performed = True

[docs]class KeybasePublicKey(object):
 '''
 A class that represents the public key side of a public/private key pair.

 It is tied very closely to the keybase.io data that's stored for public
 keys in user profiles in the data store. As such, it's meant to be
 initialized with a hash that contains the fields seen in a keybase.io
 public key record.

 Under the hood it uses GnupGP's :py:class:`gnupg.GPG` class to do the
 heavy lifting. It creates a keystore that is unique to this instance of
 the class and loads the public key in to this keystore.

 You won't be able to decrypt with this class because it only contains a public
 key, not a private key. But you can encrypt and and sign:

 >>> kbase = Keybase('irc')
 >>> pkey = kbase.get_public_key()
 >>> pkey.key_fingerprint
 u'7cc0ce678c37fc27da3ce494f56b7a6f0a32a0b9'

 If a valid GPG instance cannot be created when you initialize a KeybasePublicKey
 a KeybasePublicKeyError will be raised.
 '''
 def __init__(self, **kwargs):
 self.__data = dict()
 for key, value in kwargs.iteritems():
 if key == 'mtime' or key == 'ctime':
 self.__data[key] = datetime.datetime.fromtimestamp(int(value))
 else:
 self.__data[key] = value
 self.__cipher_algos = KeybasePublicKey.__get_gpg_config('ciphername')
 self.__digest_algos = KeybasePublicKey.__get_gpg_config('digestname')
 self.__compress_algos = ['ZLIB', 'BZIP2', 'ZIP', 'Uncompressed']
 self.__gpg = None
 self.__tempdir = tempfile.mkdtemp(suffix='.keybase')
 if self.bundle:
 self.__gpg = gnupg.GPG(
 binary=gpg(),
 homedir=self.__tempdir,
 verbose=False,
 use_agent=False)
 import_result = self.__gpg.import_keys(self.bundle)
 # TODO: For some reason importing a single key results in two result
 # entries in the ImportResult.result and ImportResult.fingerprints
 # arrays. I've asked the gnupg devs why this is and I'm waiting to
 # hear back. For now we expect one and only one key to exist in our
 # keyring after import so we'll check all of them an assert they're
 # all carrying the same fingerprint as the key that was loaded in to
 # this instance.
 for fprint in import_result.fingerprints:
 if fprint.lower() != self.key_fingerprint:
 raise KeybasePublicKeyError('A serious security error has occured: fingerprint mismatch on key import')
 else:
 raise KeybasePublicKeyError('Missing PGP key bundle in init data')
 if not self.__gpg:
 raise KeybasePublicKeyError('Unable to create Keybase public key instance')

 def __del__(self):
 # This makes sure the keyring we created is destroyed when the object
 # gets garbage collected.
 shutil.rmtree(self.__tempdir, ignore_errors=True)

 @property
[docs] def kid(self):
 '''
 The Keybase key ID for this key.
 '''
 return self.__property_getter('kid')

 @property
[docs] def key_type(self):
 '''
 The Keybase key type for this key (integer).
 '''
 return self.__property_getter('key_type')

 @property
[docs] def bundle(self):
 '''
 The GPG key bundle. This is the ASCII representation of the public
 key data associated with the Keybase key.
 '''
 return self.__property_getter('bundle')

 @property
[docs] def ascii(self):
 '''
 Synonym for bundle property.
 '''
 return self.__property_getter('bundle')

 @property
[docs] def mtime(self):
 '''
 The datetime this key was last modified in the Keybase database.
 '''
 return self.__property_getter('mtime')

 @property
[docs] def ctime(self):
 '''
 The datetime this key was created in the keybase database.
 '''
 return self.__property_getter('ctime')

 @property
[docs] def ukbid(self):
 '''
 The UKB ID for the key.
 '''
 return self.__property_getter('ukbid')

 @property
[docs] def key_fingerprint(self):
 '''
 The GPG fingerprint for the key.
 '''
 return self.__property_getter('key_fingerprint').lower()

 @property
[docs] def cipher_algos(self):
 '''
 Returns a tuple of available cypher algorithms that you can use with
 this key to encrypt data. The available algorithms depend entirely
 on the GPG version installed on the machine though most, if not
 all GPG versions, support ``AES256``.

 >>> kbase = Keybase('irc')
 >>> pkey = kbase.get_public_key()
 >>> 'AES256' in pkey.cipher_algos
 True
 '''
 return tuple(self.__cipher_algos)

 @property
[docs] def digest_algos(self):
 '''
 Returns a tuple of available digest algorithms that you can use with
 this key to hash data. The available algorithms depend entirely
 on the GPG version installed on the machine though most, if not
 all GPG versions, support ``SHA512``.

 >>> kbase = Keybase('irc')
 >>> pkey = kbase.get_public_key()
 >>> 'SHA512' in pkey.digest_algos
 True
 '''
 return tuple(self.__digest_algos)

 @property
[docs] def compress_algos(self):
 '''
 Returns a tuple of available compression algorithms that you can use
 with this key to compress encrypted data. The available algorithms
 depend entirely on the GPG version installed on the machine though
 most, if not all GPG versions, support ``ZIP``.

 >>> kbase = Keybase('irc')
 >>> pkey = kbase.get_public_key()
 >>> 'ZIP' in pkey.compress_algos
 True
 '''
 return tuple(self.__compress_algos)

 @staticmethod
 def __get_gpg_config(config):
 '''
 Returns, as a list, the value of the ``config`` property from the
 installed GPG version. If the ``config`` property is a string it
 will be the only element in the list, otherwise it will be a list
 of values the property can support.
 '''
 values = list()
 command = [gpg(), '--with-colons', '--list-config', config]
 output = subprocess.check_output(command)
 output = output.strip()
 (cfg, configname, clist) = output.strip().split(':', 2)
 if cfg == 'cfg' and configname == config and clist:
 values = clist.split(';')
 return values

 def __property_getter(self, prop):
 '''
 Get an arbitrary property value from the __data dictionary in the
 object. Returns the value or None if the property isn't in the
 dictionary.
 '''
 value = None
 if prop in self.__data:
 value = self.__data[prop]
 return value

[docs] def verify(self, data, throw_error=False):
 '''
 Verify the signature on the contents of the string ``data``.
 Returns True if the signature was verified with the key, False
 if it was not. If you supply ``throw_error=True`` to the call then
 it will throw a KeybasePublicKeyVerifyError on verification failure
 with a status message that tells you more about why verification
 failed.

 Failure status messages are:

 * invalid gpg key
 * signature bad
 * signature error
 * decryption failed
 * no public key
 * key exp
 * key rev

 For more information what these messages mean please see the
 :py:class:`gnupg._parsers.Verify` manual page.

 >>> message_good = """
 ... -----BEGIN PGP SIGNED MESSAGE-----
 ... Hash: SHA1
 ...
 ... Hello, world!
 ... -----BEGIN PGP SIGNATURE-----
 ... Version: GnuPG v1
 ...
 ... iQEcBAEBAgAGBQJTWHSVAAoJEO7zMmcMHMCAYpEH/j2hJApaHXSj0ddgbrmUdJ2z
 ... vZ5DFDR9syTPHrwtRJLPH7tgdiAtUpyXLozL321JIR7sExzONl7IKdpH1Qn0y1I/
 ... h6mV0Dm+AAJXWtbn08rDW2WWuW4+EBEy12Cfk2r1rF8KT+g3gcc2wLejSACkf7v+
 ... jKo5SnvIwIMze+Msqjcz/+hbKRdEEoD2zihe6ilMfbR1tCt8GALQVa8YEoHpgkcL
 ... MWbXSCgM7Q0gf00kHWa3A8rClW0dzW5kJG+InbymtenaDNwoNlFb6DHUdyF//REx
 ... YjJ6qHf7qFwtXPBiwrZf+VYt5OnjeWW6ybYasfrJiXi1qnd6IM40QCGlR0UXhII=
 ... =oUn0
 ... -----END PGP SIGNATURE-----
 ... """
 >>> message_bad = """
 ... -----BEGIN PGP SIGNED MESSAGE-----
 ... Hash: SHA1
 ...
 ... Hello, another world!
 ... -----BEGIN PGP SIGNATURE-----
 ... Version: GnuPG v1
 ...
 ... iQEcBAEBAgAGBQJTWHSVAAoJEO7zMmcMHMCAYpEH/j2hJApaHXSj0ddgbrmUdJ2z
 ... vZ5DFDR9syTPHrwtRJLPH7tgdiAtUpyXLozL321JIR7sExzONl7IKdpH1Qn0y1I/
 ... h6mV0Dm+AAJXWtbn08rDW2WWuW4+EBEy12Cfk2r1rF8KT+g3gcc2wLejSACkf7v+
 ... jKo5SnvIwIMze+Msqjcz/+hbKRdEEoD2zihe6ilMfbR1tCt8GALQVa8YEoHpgkcL
 ... MWbXSCgM7Q0gf00kHWa3A8rClW0dzW5kJG+InbymtenaDNwoNlFb6DHUdyF//REx
 ... YjJ6qHf7qFwtXPBiwrZf+VYt5OnjeWW6ybYasfrJiXi1qnd6IM40QCGlR0UXhII=
 ... =oUn0
 ... -----END PGP SIGNATURE-----
 ... """
 >>> kbase = Keybase('irc')
 >>> pkey = kbase.get_public_key()
 >>> verified = pkey.verify(message_good)
 >>> assert verified
 >>> verified = pkey.verify(message_bad)
 >>> assert not verified
 >>> pkey.verify(message_bad, throw_error=True)
 Traceback (most recent call last):
 ...
 KeybasePublicKeyVerifyError: signature bad

 If you want to verify the signature on a file (either embedded
 or detached) please see :func:`keybase.KeybasePublicKey.verify_file`
 method.
 '''
 vobj = self.__gpg.verify(data)
 if vobj.valid:
 return True
 if throw_error:
 raise KeybasePublicKeyVerifyError('{}'.format(vobj.status))
 return False

[docs] def verify_file(self, fname, sigfname=None, throw_error=False):
 '''
 Verify the signature on a file named ``fname``. This is a string file
 name, not a file object. If only a ``fname`` is provided the method
 assumes the signature is embedded in the file itself. An embedded
 signature is usually produced like so::

 gpg -u keybase.io/irc --sign helloworld.txt

 If a ``sigfname`` argument is prodived it's assumed to be a path to
 signature file for a detached signature. A detached signature is
 usually produced like so::

 gpg -u keybase.io/irc --detach-sign helloworld.txt

 Returns True if the signature is verifiable with the key, False if it
 is not verifiable.

 If you supply the ``throw_error=True`` option to the call then it will
 throw a KeybasePublicKeyVerifyError on verification failure with a
 status message that tells you more about why the verification failed.

 Failure status messages are:

 * invalid gpg key
 * signature bad
 * signature error
 * decryption failed
 * no public key
 * key exp
 * key rev

 For more information what these messages mean please see the
 :py:class:`gnupg._parsers.Verify` manual page.

 An embedded signature example::

 kbase = Keybase('irc')
 pkey = kbase.get_public_key()
 verified = pkey.verify_file('helloworld.txt.gpg')
 assert verified

 A detached signature example::

 kbase = Keybase('irc')
 pkey = kbase.get_public_key()
 fname = 'helloworld.txt'
 signame = 'helloworld.txt.sig'
 verified = pkey.verify_file(fname, signame)
 assert verified
 '''
 vobj = None
 with open(fname, 'r') as fobj:
 vobj = self.__gpg.verify_file(fobj, sigfname)
 if vobj.valid:
 return True
 if throw_error:
 raise KeybasePublicKeyVerifyError('{}'.format(vobj.status))
 return False

[docs] def encrypt(
 self,
 data,
 armor=True,
 cipher_algo=None,
 digest_algo=None,
 compress_algo=None):
 '''
 Encrypt the message contained in the string ``data`` for the owner
 of this KeybasePublicKey instance.

 If ``armor=True`` the output is ASCII armored; otherwise the output
 will be a
 `gnupg._parsers.Crypt object <https://python-gnupg.readthedocs.org/en/latest/gnupg.html#gnupg._parsers.Crypt>`_.

 If encryption fails a KeybasePublicKeyEncryptError is raised.

 If it succeeds data object is returned. Assuming ``armor=True`` the
 returned data is just plain old ASCII text as a ``str()``.

 .. note::

 The remaining options are supplied for maximum flexibility with GPG
 but you can, for the most part, just ignore them and go with the
 defaults if you want the simpilest (but still secure) path to
 encrypting data with this API.

 If ``cipher_algo`` is supplied it should be the name of a cipher
 algorithm to use. The default algorithm is ``AES256`` and you can
 get a list of available algorithms from the
 :func:`keybase.KeybasePublicKey.crypto_algos` parameter.

 If ``digest_algo`` is supplied it should be the name of a digest
 algorithm to use. The default is ``SHA512`` and you can get a list of
 available algorithms from the
 :func:`keybase.KeybasePublicKey.digest_algos` parameter.

 If ``compress_algo`` is supplied it should be the name of a compression
 algorithm to use. The default is ``ZIP`` and you can get a list of
 available algorithms from the
 :func:`keybase.KeybasePublicKey.compress_algos` parameter.

 For more information on how encryption works please see the
 :py:class:`gnupg.encrypt` manual page.

 A simple example::

 kbase = Keybase('irc')
 pkey = kbase.get_public_key()
 instring = 'Hello, world!'
 encrypted = pkey.encrypt(instring)
 assert encrypted
 assert not encrypted.isspace()
 assert encrypted != instring
 '''
 # For a list of things we can put in kwargs see:
 # https://python-gnupg.readthedocs.org/en/latest/gnupg.html#gnupg.GPG.encrypt
 kwargs = dict()
 if cipher_algo:
 if cipher_algo not in self.__cipher_algos:
 raise KeybasePublicKeyEncryptError(
 'cipher algorithm {} unrecognized'.format(cipher_algo))
 kwargs['cipher_algo'] = cipher_algo
 if digest_algo:
 if digest_algo not in self.__digest_algos:
 raise KeybasePublicKeyEncryptError(
 'digest algorithm {} unrecognized'.format(digest_algo))
 kwargs['digest_algo'] = digest_algo
 if compress_algo:
 if compress_algo not in self.__compress_algos:
 raise KeybasePublicKeyEncryptError(
 'compression algorithm {} unrecognized'.format(compress_algo))
 kwargs['compress_algo'] = compress_algo
 else:
 kwargs['compress_algo'] = 'ZIP'
 kwargs['armor'] = armor
 kwargs['encrypt'] = True
 kwargs['symmetric'] = False
 kwargs['always_trust'] = True
 encrypted = self.__gpg.encrypt(
 data,
 self.__gpg.list_keys()[0]['keyid'],
 **kwargs)
 if not encrypted:
 raise KeybasePublicKeyEncryptError('unable to encrypt data')
 if armor:
 encrypted = str(encrypted)
 return encrypted

[docs]class KeybaseError(Exception):
 '''
 General error class for Keybase errors.
 '''
 pass

class KeybaseInvalidIdTypeError(Exception):
 '''
 Thrown when an invalid ID type is provided to a method that is expecting
 a static ID type like TWITTER or GITHUB.
 '''
 pass

[docs]class KeybaseUnboundInstanceError(Exception):
 '''
 Thrown when calling a Keybase object method that requires the object
 be bound to a real user in the keybase store and the instance hasn't
 had such a binding established yet.
 '''
 pass

[docs]class KeybaseUserNotFound(Exception):
 '''
 Thrown when calling Keybase.lookup(username) and the username cannot
 be located in the keybase.io public key repository.
 '''
 pass

[docs]class KeybaseLookupInvalidError(Exception):
 '''
 Thrown when calling Keybase.lookup(username) on an instance that has
 already been bound to a valid user via another lookup() call.
 '''
 pass

[docs]class KeybasePublicKeyError(Exception):
 '''
 Thrown when a KeybasePublicKey cannot be created successfully.
 '''
 pass

[docs]class KeybasePublicKeyVerifyError(Exception):
 '''
 Thrown when a KeybasePublicKey cannot verify the signature on a
 data object.
 '''
 pass

[docs]class KeybasePublicKeyEncryptError(Exception):
 '''
 Thrown when a KeybasePublicKey cannot perform encryption on some
 data object.
 '''
 pass

 © Copyright 2014, Ian Chesal.
 Created using Sphinx 1.2.2.

_static/plus.png

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_static/down.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/comment-bright.png

_static/comment.png

